A AB2L iniciou suas atividades em 2017 e, desde então, escreve os capítulos de uma história que tem muito para contar sobre o ecossistema de tecnologia jurídica.
Conheça nossas associadas.
Programas para educar o mercado, fomentar o ecossistema e participar ativamente do processo de regulamentação brasileiro entre direito e tecnologia.
Capítulos regionais/locais exclusivos para associados e grupos abertos ao público em geral.
Mais de 300 horas de conteúdo educacional focado no ecossistema jurídico e tecnológico.
Exclusivo para associados.
When I introduce myself as a data scientist, I often get questions like “What’s the difference between that and machine learning?” or “Does that mean you work on artificial intelligence?” I’ve responded enough times that my answer easily qualifies for my “rule of three”.
The fields do have a great deal of overlap, and there’s enough hype around each of them that the choice can feel like a matter of marketing. But they’re not interchangeable: most professionals in these fields have an intuitive understanding of how particular work could be classified as data science, machine learning, or artificial intelligence, even if it’s difficult to put into words.
So in this post, I’m proposing an oversimplified definition of the difference between the three fields:
To be clear, this isn’t a sufficient qualification: not everything that fits each definition is a part of that field. (A fortune teller makes predictions, but we’d never say that they’re doing machine learning!) These also aren’t a good way of determining someone’s role or job title (“Am I a data scientist?”), which is a matter of focus and experience. (This is true of any job description: I write as part of my job but I’m not a professional writer).
But I think this definition is a useful way to distinguish the three types of work, and to avoid sounding silly when you’re talking about it. It’s worth noting that I’m taking a descriptivist rather than a prescriptivist approach: I’m not interested in what these terms “should mean”, but rather how people in the field typically use them.
Data science is distinguished from the other two fields because its goal is an especially human one: to gain insight and understanding. Jeff Leek has an excellent definition of the types of insights that data science can achieve, including descriptive (“the average client has a 70% chance of renewing”) exploratory (“different salespeople have different rates of renewal”) and causal (“a randomized experiment shows that customers assigned to Alice are more likely to renew than those assigned to Bob”).
Again, not everything that produces insights qualifies as data science (the classic definition of data science is that it involves a combination of statistics, software engineering, and domain expertise). But we can use this definition to distinguish it from ML and AI. The main distinction is that in data science there’s always a human in the loop: someone is understanding the insight, seeing the figure, or benefitting from the conclusion. It would make no sense to say “Our chess-playing algorithm uses data science to choose its next move,” or “Google Maps uses data science to recommend driving directions”.
This definition of data science thus emphasizes:
Data scientists might use simple tools: they could report percentages and make line graphs based on SQL queries. They could also use very complex methods: they might work with distributed data stores to analyze trillions of records, develop cutting-edge statistical techniques, and build interactive visualizations. Whatever they use, the goal is to gain a better understanding of their data.
I think of machine learning as the field of prediction: of “Given instance X with particular features, predict Y about it”. These predictions could be about the future (“predict whether this patient will go into sepsis”), but they also could be about qualities that aren’t immediately obvious to a computer (“predict whether this image has a bird in it”). Almost all Kaggle competitions qualify as machine learning problems: they offer some training data, and then see if competitors can make accurate predictions about new examples.
There’s plenty of overlap between data science and machine learning. For example, logistic regression can be used to draw insights about relationships (“the richer a user is the more likely they’ll buy our product, so we should change our marketing strategy”) and to make predictions (“this user has a 53% chance of buying our product, so we should suggest it to them”).
Models like random forests have slightly less interpretability and are more likely to fit the “machine learning” description, and methods such as deep learning are notoriously challenging to explain. This could get in the way if your goal is to extract insights rather than make predictions. We could thus imagine a “spectrum” of data science and machine learning, with more interpretable models leaning towards the data science side and more “black box” models on the machine learning side.
Most practitioners will switch back and forth between the two tasks very comfortably. I use both machine learning and data science in my work: I might fit a model on Stack Overflow traffic data to determine which users are likely to be looking for a job (machine learning), but then construct summaries and visualizations that examine why the model works (data science). This is an important way to discover flaws in your model, and to combat algorithmic bias. This is one reason that data scientists are often responsible for developing machine learning components of a product.
Artificial intelligence is by far the oldest and the most widely recognized of these three designations, and as a result it’s the most challenging to define. The term is surrounded by a great deal of hype, thanks to researchers, journalists, and startups who are looking for money or attention.
This has led to a backlash that strikes me as unfortunate, since it means some work that probably should be called AI isn’t described as such. Some researchers have even complained about the AI effect: “AI is whatever we can’t do yet”.1 So what work can we fairly describe as AI?
One common thread in definitions of “artificial intelligence” is that an autonomous agent executes or recommends actions (e.g. Poole, Mackworth and Goebel 1998, Russell and Norvig 2003). Some systems I think should described as AI include:
Again, we can see a lot of overlap with the other fields. Deep learning is particuarly interesting for straddling the fields of ML and AI. The typical use case is training on data and then producing predictions, but it has shown enormous success in game-playing algorithms like AlphaGo. (This is in contrast to earlier game-playing systems, like Deep Blue, which focused more on exploring and optimizing the future solution space).
But there are also distinctions. If I analyze some sales data and discover that clients from particular industries renew more than others (extracting an insight), the output is some numbers and graphs, not a particular action. (Executives might use those conclusions to change our sales strategy, but that action isn’t autonomous) This means I’d describe my work as data science: it would be cringeworthy to say that I’m “using AI to improve our sales.
The difference between artificial intelligence and machine learning is a bit more subtle, and historically ML has often been considered a subfield of AI (computer vision in particular was a classic AI problem). But I think the ML field has largely “broken off” from AI, partly because of the backlash described above: most people who to work on problems of prediction don’t like to describe themselves as AI researchers. (It helped that many important ML breakthroughs came from statistics, which had less of a presence in the rest of the AI field). This means that if you can describe a problem as “predict X from Y,” I’d recommend avoiding the term AI completely.
Suppose we were building a self-driving car, and were working on the specific problem of stopping at stop signs. We would need skills drawn from all three of these fields.
Por David Robinson
Nossas novidades direto em sua caixa de entrada.